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Mc/sec is used in Eq. (11), it is found that 

| i I , | = U ) 3 X 1 0 6 G , 

with an uncertainty of about 1%. When the theoretical 
value acaic(3d54.s 7Sz) = -—144 Mc/sec is used, the same 
equation gives # / = + 1.8Xl06 G. 

Freeman and Watson have followed a more detailed 
approach for the theoretical evaluation of the internal 
field.9 They have made approximate spin-polarized 
Hartree-Fock calculations in which the core electrons 
are allowed a polarization due to the unpaired 4s elec
tron as well as to the unpaired 3d electrons. Their 
result for the 3dHs 7 5 3 configuration gives — 0.65 X106 G 
from the core polarization and +1.15X10 6 G from the 
As electron. The internal field is thus calculated to be 
+0.50 X106 G, a value somewhat closer to the measured 
value than the simpler estimate given above. Freeman 
and Watson emphasize that their result for the (pres-

9 A. J. Freeman and R. E. Watson (private communication). 

INTRODUCTION 

CONSIDER an atom in an external field of given 
frequency co and of wavelength larger than atomic 

dimensions. The response of the atom to the field is 
discussed most conveniently in terms of the properties 
of its differential oscillator-strength distribution g(o>). 
This function is related directly to the photoabsorption 
cross section of the atom, i.e., the photoextinction 
coefficient per atom, 

0-(o;)= (2Tr2e2/mc)g(co), 

where 
(2**#/mc) = 8.067X10~18 Ry cm2, 

* The work was supported in part by the U. S. Atomic Energy 
Commission, the National Aeronautics and Space Administration, 
the Office of Naval Research, and the Swedish National Research 
Council. 

ent) case of two unfilled shells is especially sensitive to 
several factors10 which occur in the calculation. 

Although the data suggest that b may be exactly 0, 
this value is entirely consistent with the data and with 
what would be expected for a (dbs) state. 
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with ft R y = 13.6 eV. Of recent, the need for compre
hensive information about the properties of g(co) in 
different frequency ranges for atoms throughout the 
periodic system has become acute in many fields, and 
has pointed to the limited description current atomic 
theory can afford of the response of an atom to an arbi
trary external field. 

The function g(a>) may be said to comprise all the 
fundamental information on the quantum dynamics 
of atoms. For a cursory survey of the dependence of 
g(w) on frequency and atomic number Z, it is convenient 
to consider three frequency ranges. In the low-frequency 
range (1), where 0 < (o?/Ry)< 1, g(ca) essentially consists 
of the sharp lines familiar from optical spectroscopy, 
separated by frequency ranges of low absorption; in 
this range, g(co) changes irregularly with Z and reflects 
in its details the atomic binding. In the high-frequency 
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range (3), where (co/Ry)>Z2, g(o)) exhibits character
istic x-ray absorption edges; beyond the iT-shell ab
sorption edge, it tends monotonically to zero as 
(co/Ry)~n, where #~(2—4) . In the intermediate fre
quency range (2), where K ( c o / R y ) < Z 2 , the contribu
tions from the intermediate shells of the atom are ex
pected to overlap strongly such that, on the whole, 
g(w) should depend smoothly on co. While g(co) has been 
studied extensively in the frequency ranges (1) and 
(3), very little is known about the properties of g(co) in 
range (2). 

Our study is intended to contribute to the theory of 
g(to) with particular emphasis on its properties in the 
intermediate frequency range K ( a > / R y ) < Z 2 . Section 
1 summarizes the formalism of response functions and 
introduces an approximate integral equation for the 
propagator function of excitations in atoms. Contact is 
made with previous work in Sec. 2 by deriving from 
this integral equation the response function of atoms in 
the local electron-gas approximation. A Fredholm per
turbation expansion yields new approximate solutions, 
in Sec. 3, by retaining coherence effects between all 
single-particle excitations of the atom. In the framework 
of the schematic Hartree model, these solutions give 
indications for atomic resonances which are basically 
collective in origin. In Sec. 4, the theory is restated in 
terms of the statistical model of the atom, with similar 
results. An illustrative example in the statistical ap
proximation, given in Sec. 5, bears on the conditions 
for such collective resonances to occur and sketches 
some of their features. 

1. FORMAL STATEMENT OF PROBLEM 

We wish to calculate the rate of excitation of an atom 
from its ground state in an external field sufficiently 
weak for the Born approximation to be valid. The field 
is taken to be scalar, of a definite frequency and of a 
wavelength large compared to the dimensions of the 
atom. We describe its interaction with the atom by the 
density operator p(x)=^+(x)i/'(x) in the notation of 
second quantization. For a study of the absorption of 
light we should consider the interaction with a trans
verse field, of course, but in the long-wavelength limit, 
the responses of the atom to a transverse field and to a 
longitudinal field are connected in a simple way; the 
scalar field is chosen merely for mathematical conveni
ence. Our presentation follows the lines of linear re
sponse theory as now widely used in many-particle 
physics, and we refer to the current literature for de
tailed expositions.1 

Let the interaction be of the form 

- / • 

F = V0 / <Px expp(q-x—co/)]p(x)+cc., (1) 

1 Cf., e.g., D. Pines, The Many-Body Problem (W. A. Benjamin, 
New York, 1961); A. J. Glick, Ann. Phys. (N. Y.) 17, 61 (1962). 

where q is the wave vector, and p(x) the electron density 
of the atom at the point x. All quantities are considered 
given in atomic units. In the following, we set F 0 = l . 
The total transition rate of the atom from the ground 
state in Born approximation is given by 

TF=2x £ $ ( « - £ » ) 
' / • 

(n | / dzxp (x) exp (7q • x) 10) , (2) 

where |0) denotes the ground state of the system, and 
| n)> En denote its excited states and the corresponding 
excitation energies. 

The transition rate can be related to the autocorrela
tion function of the density fluctuations in the usual 
manner, 

R (q,o) = - / die™1 / <Pxd?x' 

Xexp(- .q.x) |{Oir[p(x ;Op(x , ,0)] |0) |exp(iq.xO ) (3) 

where 
p(x,t)=-eiHtp(x)e-iHt, 

H being the Hamiltonian of the system in the absence 
of an external field. T denotes the Wick time-ordering 
symbol. On introducing the eigenstates of H, Eq. (3) 
can be written for OJT^O as 

f\ 

JR(q,w) = l im]£ 
e->0 « 

(n | / dzxp (x) exp (iq • x) 10) 

to—En-\-ie 

(n\ I dzxexp(—iq*x)p(x)\0) 

o+En 

(4) 

The poles of R(q,to) give the excitation energies of the 
system, while the transition rate can be expressed as 

W=-2ImR(q,co). 

Because of the sum rule 

- 2 / ImR (q,w)«dec = v<fN, 

(5) 

(6) 

where A7 is the number of electrons in the atom, we 
can introduce a differential oscillator-strength distribu
tion g(w), defined as 

g(a>)=-(2u/Tq*)ImR(q,co), 

and, by Eq. (6), normalized such that 

f. g(co)dcc=N. 

in 

(8) 
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The study of the function g(co) under various as
sumptions about the dynamic response of the atom is 
the primary concern of this paper. 

The formulation of our problem, Eq. (7), in terms of 
the complex response function, Eq. (4) suggests a study 
of the propagator function 

$«(x) denotes the "wave function" of the particle-hole 
pair, i.e., the product ^;*(x)#/(x) of the corresponding 
one-electron wave functions associated with the Hartree-
Fock states i and j . 

Next, we introduce the approximate integral equation 
which forms the basis for our discussion 

r+°° r 1 
Q(x,x',«)= - i / dte^(0\ r(p(x,/)p(x',0))|0> (9) g(x,x>) = g 0(x,x>)+ / Q 0 ( x , x » -

J-<x> J X"~ x'" 

from which the function i£(q,w) is to be calculated ac
cording to 

#(q,w) = \dzxd?%' exp[- iq . (x-x')](?(x,x>). (10) 

The further formal development along these lines 
would entail a study of the equation satisfied by the 
two-particle Green's function, as discussed frequently 
in current literature. Since we aim at a discussion of the 
properties of the differential oscillator-strength distribu
tion g(co) under simplifying assumptions, we shall not 
pursue here these general questions, but rather turn 
to a description of the approximations to be considered 
as starting points for our further considerations. We 
base our development on an approximate description 
of the atom corresponding closely, in physical terms, to 
the linearized time-dependent Hartree equations, in 
which the shifts of the energy levels due to many-
particle effects are accounted for by a time-dependent 
Hartree field. Instead of working directly with the time-
dependent Hartree equations, however, we start out 
from an equivalent integral equation for the propagator 
function ()(x,x',co). 

As our zeroth-order approximation, we employ the 
conventional Hartree-Fock description and assume the 
single-particle energies and the one-electron wave func
tions Ui(x) to be known both for the occupied and the 
virtual unoccupied states. In the ground state, the N 
lowest levels are taken to be occupied, and for simplicity 
we assume that the ground state is nondegenerate. 
Elementary excitations in the system imply the raising 
of an electron from an occupied to an unoccupied level, 
i.e., particle-hole excitations. Such excitations couple 
to each other through the Coulomb interaction. It is 
our task, then, to find at least approximately the result
ing new states of the atom, which manifest themselves 
as resonances of Q(x,x',w). 

First, we introduce the propagator function Qo(x,x',a>) 
corresponding to the elementary excitations without 
interaction. We obtain Q0 with the use of Eqs. (4) and 
(9) by replacing |0) and \n) by the corresponding 
Hartree-Fock states, and En by the energies of the cor
responding particle-hole excitation energies, to be de
noted by o)n, 

f$w(x)$n*(x') $»*(x)*»(x')l 
Co(x,x» = limE - : — • (") 

Xg(x , , ,,x ,,co)^V /JV , /. (12) 

In the language of many-particle perturbation theory, 
the approximation inherent in our basic Eq. (12) cor
responds to neglecting all but the so-called "bubble" 
diagrams describing elementary particle-hole excita
tions, with the obvious difference that, in the present 
context, the elementary excitations refer to the Hartree-
Fock states of the atom rather than to the plane-wave 
states of extended systems. 

It is evident from the structure of Eq. (12) that ex
citations of different symmetry will not mix; one has 
to couple the particle-hole excitations in Q0(x,x',a>) to 
the appropriate quantum numbers before attempting 
to solve the equation. For our discussion, only the case 
of dipolar excitations is of interest. 

Before proceeding further, we digress briefly to estab
lish contact with the theory of the extended uniform 
electron gas in the high-density limit, and quote its 
results for reference in our subsequent discussions. In
serting the free-electron energies and wave functions in 
Eq. (11), we obtain 

:,x/,co) = / 
(2TTW 

€^° n I CO —C0n+^*€ C0 + COn— it 

Qo(x,x/,co) = 7 — - / (Pq exppq(x-x0]<2o(g,w), (13) 
(2TT)3 J 

where 

(?ofa,w) = — - [d*pd-(\p\-pF)e+(\p+q\-pF) 
(2TT)3 J 

X ^ - d ^ + p . q H i e ] - 1 

- C ^ + ^ + p - q ) - ^ ] - 1 } . (13a) 

In Eqs. (13), (13a), q denotes the momentum difference 
of the particle-hole excitation, p the momentum of the 
hole state, pF the Fermi momentum, and 

6±=l{\±.x/\x\). 

On writing in analogy to Eq. (13) 

e ( x , x » = - — fAexppq(x-xO]efeco) (14) 
(2TT)3 J 

and inserting Eqs. (13) and (14), Eq. (12) has the well-
known solution 

Qfo<o) = — . (15) 
l-(4ir/fl*)Gofo«) 



2138 W . B R A N D T A N D S . L U N D Q V I S T 

For later reference, we quote the solution in the limit Lindhard and Scharff, 

lim <2(g,co) = -
q2p 

0)* — COQ 

(16) 

where p is the density of the gas, and w0= (47rp)1/2 the 
classical plasma frequency. 

From Eq. (15) follow all the dielectric properties of 
the electron gas, as first derived by Lindhard.2 

2. ATOMIC RESPONSE FUNCTION IN THE 
ELECTRON-GAS APPROXIMATION 

In this section we give a brief discussion of a simple 
approximation to the function g(w), which, although 
neither new or revealing with regard to collective be
havior, nevertheless is pertinent to our later discussions. 
One of the simplest assumptions one can make about 
the excitation spectrum in the framework of noninter-
acting particles is to associate with each point in the 
atom a single frequency, which is a function only of the 
local density. Such a model and its application to physi
cal phenomena has been employed in particular by 
Lindhard and Scharff,3 and we refer to their paper for a 
detailed discussion. In the simplest version, one chooses 
the frequency to be equal to just the classical plasma 
frequency co0(x)==[47rp(x)]1/2. This choice of resonance 
frequency is equivalent, of course, to assuming that the 
local response to the field is the same as that of a uniform 
electron gas of a density equal to the local density. 

I t is a straightforward matter to rederive the expres
sion for g(co) in the form given by l indhard and Scharff 
by introducing the corresponding approximations in 
solving the integral equation. The local density fluctua
tions at a wave vector q and frequency co are given by 
Eq. (10), for which we find the expression 

£(q,co)= dsx-
Qo(q,o>) 

l-(±Wq2)Qo(q,o>) 
(17) 

where Qo(q,o)), given by Eq. (13a), depends on the local 
density through 

M * H [ > 2 P ( X ) ] 1 / 3 . 

Thus, the atom responds locally at the wave number 
only of the external field. In the long-wavelength limit, 
the response function reduces to 

lim R(q,u>) — q2 I dsx-
«"*° J c 

P(x) 

;2—co0
2(x) 

(18) 

We insert in Eq. (7) and obtain the expression of 

*J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 28, No. 8 (1954). 

a J. Lindhard and M. Scharff, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 27, No. 15 (1953). 

• / • 

g(w)= <Pxp(x)8(us-b)o(x)), (19) 

i.e., g(co) is equal to the number of electrons with fre
quencies in the range [co, co+dco]. 

In this model, therefore, the function g(co) maps the 
charge distribution of the atom and, consequently, is 
essentially a smooth function of frequency in the rele
vant frequency range. I t exhibits no collective reso
nances reminiscent, say, of the giant resonances in 
nuclei, because the model assumes ab initio that each 
spherical shell of the atomic cloud responds separately. 

One might suppose that these shortcomings can be 
remedied to some extent by taking into account the 
effects of the density gradient in a way similar to the 
Weizsacker correction in the statistical Thomas-Fermi 
model, while maintaining the idea of a local electron-gas 
approximation. This amounts to replacing the step 
functions in Eq. (13) by the quantum-mechanical 
expressions 

< 0 ± [ £ 2 - ^ 2 ( X ) ] ) R = [d?r 

X e x p ( - ^ . r ) < x | ^ [ ^ o p
2 - ^ F

2 ( x ) ] | x ) , (20) 

where r=x— x', and R = (x+x ' ) /2 . This integral can be 
solved by a formula due to Glauber4 in an approxima
tion which depends on the commutator of pop and PF(X) 
and all its powers; the final result can be expressed in 
terms of Airy integrals. For evaluating Qo(q,u), it 
turned out to be most convenient to work with the in
tegral representation 

<«*(*)> 

1 . r 
= d = — h m / 

lid *-*° J- t^ie 
dt, (21) 

with 2= (P2~PF2)/(PF\ V £ F | ) 2 / 3 . 

However, the result in the long-wavelength limit re
duces exactly to the result for a gas with no density 
gradient. That is, corrections to Eq. (19) due to the den
sity gradient will appear only if one takes into account 
effects deriving from the actual wavelength of the ex
ternal field. We shall not discuss such effects in this 
work. 

The conclusion of this brief discussion is that the local 
approximation of the type incorporated in Eq. (19) can
not exhibit possible collective resonances in the response 
of atoms. We are led to expect that in order to find such 
resonances, approximations to the solution of the inte
gral equation must be found which preserve the phase 
relation between the response of different parts of the 
atom. 

1 R. J. Glauber, Phys. Rev. 84, 395 (1951) 
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3. APPROXIMATE SOLUTION OF 
INTEGRAL EQUATION 

An exact solution of the integral equation is possible 
only under very special assumptions about the matrix 
elements of the interaction. In general, one has to resort 
to approximation methods, chosen in such a manner, 
however, that they in contrast to approximations as 
the one discussed in Sec. 2, retain the salient features of 
atomic dynamics which can cause new resonances in 
the complex response function i£(q,a>). For example, 
the ordinary perturbation expansion of Eq. (12) repeats 
to all orders just the resonances in (2o(x,x',co); therefore, 
it is ruled out as an acceptable approximation method 
since new possible resonances are coherence effects 
arising from the interaction to all others. 

We employ the Fredholm expansion, which constructs 
the solution to the integral equation as the ratio of two 
entire functions in the coupling constant. For the pres
ent, let us consider the expansion of the solution of Eq. 
(12) only to the lowest order terms in the interaction in 
both numerator and denominator, 

G(x,x',W) = e o ( x , x » 

/ dzydhQ0(x,y,u)——-<2o(z,x» 
J |y-z| 

1 - <PydfizQQ(y,z,»)-

(22) 

| y - z | 

Because of the reasons given in Sec. 1, it is understood 
that Eq. (22) considers only the subset of <20(x,x',o;) 
corresponding to the symmetry type of the excitation. 

The new resonances, shifted relative to those of QQ 
by the Coulomb interaction, are the solutions of the 
dispersion relation 

1 = 
• / • 

<Py<PzQQ(y,z,<a)-
1 

(23) 

The general nature of these results is best elucidated 
in terms of the dipolar excitations of a model similar to 
the so-called schematic model5 in discussing the qualita
tive features of giant resonances in nuclei. We choose 
the quantization axis along the direction of the wave 
vector of the external field and consider the excitations 
corresponding to the quantum numbers L=l, M=l, 
5 = 0 . We approximate the matrix elements of the 
Coulomb interaction by the expression 

* n,m hnhmUnUn, (24) 

states, the variation between matrix elements with 
different particle states is governed predominantly 
by the dipole matrix elements. For Eq. (24), the integral 
equation (12) can be solved directly. WTe find in the 
limit | q | —> 0 the expression 

where Dn and Dm are the dipole matrix elements for the 
particle-hole excitations n and m\ \ n and Xm are coupling 
parameters of dimension frequency which depend mainly 
on the corresponding hole state, so that for given hole 

6 G. E. Brown, Lectures on Many-Body Problems (NORDITA, 
Copenhagen, 1961). 

R(q,o>) = q> E 
U 

+ £x»-
U V f l - E X n 2 - ^ - ) } , (25) 

where fn=2oonDn
2 is the oscillator strength of the 

particle-hole excitation n in atomic units. The sum
mation includes, of course, an integration over the con
tinuous part of the spectrum. 

Equation (25) coincides with the result obtained from 
the first-order Fredholm formula Eq. (22), which proves 
it to be the exact solution of the integral equation for 
the schematic model. As the higher order corrections to 
Eq. (22) obviously also vanish for oscillations of the 
uniform electron gas at a given wave number q, we 
expect Eq. (22) to be useful for gaining some insight 
into the collective behavior of atoms. 

We calculate the differential oscillator-strength distri
bution for the schematic model. On inserting Eq. (25) 
in Eq. (7), one finds 

f(«)=E{Lx»/.W-«»»:h,}V 
i n 

{E x»V»W-«.,}-s}s(M-a*) • (26) 
n 

P denotes that the principal value shall be taken in 
the continuous part of the spectrum. Equation (26) 
shows absorption at frequencies £2*, which are solutions 
of the dispersion equation 

i=Ex„2-
U 

•>2 — / , i 2 
(27) 

Equation (26) reduces to the function 

of the single-particle excitations if and only if all 12n=o>„, 
which obtains for all Xn-^0. 

Knowing the quantities con, fn and Xw one can solve 
for the resonance frequencies by numerical or graphical 
methods. Here, we follow an earlier discussion6 and 
indicate only in a qualitative way the nature of the 
solutions of Eq. (27) and the corresponding properties 
of g(co) in three different situations. 

(a) In a frequency range where the separation between 
adjacent levels is small, the right-hand side of Eq. (27) 
oscillates rapidly between minus and plus infinity when
ever the frequency passes through the range between 
neighboring levels, (com; com+i), i.e., a root 12w~wm exists 

6 W. Brandt, Phys. Rev. I l l , 1042 (1958). 
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between any two such adjacent levels. These states are 
best characterized as slightly modified particle-hole 
excitations with no bearing on collective phenomena, 
because at such frequencies Eq. (26) reduces essentially 
to a partial sum of the form 

-EA M 6(co-12 m ) . (28) 
m 

The effective oscillator strengths associated with these 
states, Am, are in general very small. 

(b) In a frequency range where the excitation energies 
of the noninteracting particle-hole states are so widely 
spaced that \i2fi<£\a>i+i2—w*2|, one root appears in the 
range between co* and coj+i which is given approximately 
by 

r X*2/* T 1 

Oz^W+A*2 /* 1 - E • (29) 
L k*l 0)i2 — 0)k

2J 

That is, the square of the resonance frequency appearing 
between co*2 and coz+i

2 (coj+i>coz) consists of a single-
particle component and a collective component. The 
state may be considered more or less collective in nature, 
depending on which component dominates. For a uni
form electron gas in the long-wavelength limit, coz=0 
and \i2fi=O)Q2, i.e., the excitation in that case is entirely 
collective. States of the kind described by Eq. (29) 
contribute to g(co) the partial sum 

- E / Hx/Z )/(i-2: ) 

X5(co-a z) . (30) 

If the second term in the brackets is small compared to 
1, the states again may be considered to be slightly 
modified single-particle states, as in range (a). Whenever 
this term becomes > 1, the interaction causes a redistri
bution of the single-particle spectrum proportional to 
\i2fu However, there still exists a one-to-one relation 
between Qi and coj, i.e., in range (b) as in (a), g(co) re
tains the characteristics of single-particle spectra. 

The particle-hole spectrum in atoms suggests that the 
conditions for these types of solutions with modified 
single-particle spectra in situations (a) and (b) may be 
fulfilled best by the valence shells, where the levels 
below the ionization edge are closely spaced, and by the 
innermost shells, where the high-excitation energies to 
unoccupied states make the single-particle contribution 
to the dominating component. The modification of the 
single-particle spectrum by the interaction in the sense 
of Eq. (30) should be most pronounced for excitations 
of the electrons just below the valence shells, where the 
level spacing is sufficiently large for the conditions of 
range (b) to apply, but where the single-particle and 
collective contributions are comparable. One may 
reasonably suppose, therefore, that in general g(co) will 
have the properties of a modified single-particle spec

trum at frequencies corresponding approximately to 
the frequency ranges (1) and (3) referred to in the 
Introduction. 

(c) Consider now a situation where a gap exists be
tween groups of discrete levels in the particle-hole 
excitation spectrum, which is either empty, or contains 
parts of the continuous spectrum of small total oscillator 
strength. If, then, at frequencies slightly larger than 
all the levels below the gap 

A-n Jn 

E >l, 
%<w CO2 — 0)n

2 

one root can exist in the spectral range of the gap. For 
a root sufficiently far from the gap edges, the resonance 
frequency is given by 

0 ^ = W ) a v + ( X ^ ) a v ? (31) 

where to leading terms in the shift, 

<«<V^( E x»7«»»J)/( E x„v»); 

/ / x„7»\ 
(x//,)av~( E x,v»)/(i+ E • 

We introduce the following averages over the distribu
tion of particle-hole excitations 

( V / ; ) a V = E X » ' / „ + ( - l ) ' L (An') '/-, (32) 

where for large shifts X/c^SVXn/W. By Eq. (26), states 
of the type described by Eq. (31) contribute to g(co) 
the term 

<«> <At/*)av2 

gcoii^i : «(«-0<) . (33) 
* <A//*)av 

Equation (33) couples all single-particle states into new 
resonances of the atom as a whole. 

This situation is likely to correspond somewhat to 
the giant resonances known to exist in nuclei. In atoms, 
such contributions may come from groups of closely 
spaced particle-hole excitations to particle states above 
the ionization edge, acting coherently to give rise to 
collective resonances. Resonance phenomena of this 
sort lie in frequency range (2). 

The effects of the resonance conditions on the damp
ing of the resonance will not be discussed in the present 
context. 

The preceding remarks were intended only as a 
qualitative orientation regarding the possible nature of 
coherent modes in atoms. Work is in progress to explore 
the relevance of this simple model for real atoms, which 
will be reported separately. The results to be expected 
from such an investigation will depend on details of 
the properties of a specific atom in question. I t is of some 
interest, therefore, to undertake a simplified treatment 
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based on the statistical model of the atom which ex
presses collective phenomena in atoms as smooth func
tions of the atomic number Z. 

4. ATOMIC RESPONSE FUNCTION IN THE 
STATISTICAL APPROXIMATION 

In rederiving the results of Sec. 3 for the statistical 
model of the atom, we assume, as in Sec. 2, that the 
energy spectrum of particle-hole excitations and the un
perturbed propagator is locally the same as that of an 
infinite electron gas of density equal to the local density 
p(x). However, we do not insist on local momentum 
conservation, as in Sec. 2, which led to the result that 
each spherical atomic shell responds only to the wave 
number of the external field. We employ the Fredholm 
expansion instead, whereby we retain in an approximate 
manner the coherence between the response of different 
parts of the atom, analogous to the response of the atom 
as a whole as sketched in the preceding section for the 
Hartree model. 

The statistical model of the atom is justified, at least 
formally, only for large Z. Our treatment makes use of 

this by only retaining terms to leading order of Z in 
each term of the expansion. Consistency with the choice 
of the propagator of the infinite electron gas for the 
unperturbed Qo(x,x',co) requires that also the kernel 
and the iterated kernels of the integral equation (12) 
be those of the infinite electron gas; i.e., 

tfn(x,x»=(2»W<fy 

Xexpftq. (x-xO][47reo(?,co)/<72]-, 

n = l , 2 , 3 , ••- . (34) 

With Eq. (34), an approximate solution of Eq. (12) 
obtains from the Fredholm expansion by summing both 
numerator and denominator and retaining the leading 
terms in Z in each order of the interaction. To each order 
in the interaction, the terms containing only iTn(x,x',co) 
are of higher order in Z than any of the products of 
traces and kernels of lower order, and the latter are 
neglected. One obtains 

e (x ? x»-eo (x ,x ' , a> ) + 1— / <Px{Y, Kn(x,xJcS)/n) <*ME ir„(x,y,co)}Qo(y,x» 

Qo(q,(a)4irQo(kq^W 
= Qo(xJx'JoJ)+[l+F(co)]~1(27r)-3 ffiq expftq. ( x - x ' ) ] ; , (35) 

where 

F(o>)= (2TT)-3 / fflxfflq ln{l-47r<2o(g,co)/g2}, (36) 

with the notation 2 ln{G} = ln |GG* |+ ln (G/G*); in the 
imaginary part, only the principal values between — IT 
and +iir are retained. Inserting Eq. (35) in Eq. (10) 
yields the response function 

JR(q,a>) = dzx-
Qo(q,u) F(w) 

l - 4 7 T 0 o ( ^ ) / g 2 1+F(a>) 

Qo(q,<*)**Qo(q,<*W 
X d*x-

l-4*Q0(q,oW 
(37) 

In the long-wavelength limit, |q|—> 0, Eq. (37) 
reduces to 

*(?: ,o)) = q2\ / d*x-
P(x) F(u) 

o>2-co0
2(x) l+F(co) 

a>o2(x) p(x) 
X / cPx-

OJ2 CO2 — 0)Q2(X) 

. (38) 

As in Eq. (25), the first term in Eq. (38) is just the 
response of the individual spherical atomic shells in the 

electron-gas approximation as given in Eq. (18). The 
second term arises from the modification due to the 
response of the atom as a whole. 

We recall that the derivation of Eq. (38) is based 
explicitly on the assumption that we are dealing with a 
bounded system of a given number of electrons. I t does 
not seem obvious from Eq. (36) that F(co) should vanish 
in the limit of an infinite system of constant number 
density. However, one can demonstrate the proper 
limiting behavior of F(o>) along the following lines. The 
integrand in Eq. (36) depends on the electron density 
through Qo(q,o)) and thus on r. For a spherically sym
metric density distribution, we can integrate by parts 
over the radial coordinate while keeping q fixed. This 
leads to a new integrand containing the gradient of 
the electron density as a factor. The integrated part 
vanishes for a bounded system such as an atom, where 
the density is finite at the origin and vanishes sufficiently 
rapidly at infinity. This result shows that F(u) and, 
hence, the atomic response as compared to that of the 
uniform electron gas depends in an essential way on the 
gradient of the electron density. If we let the density 
gradient go to zero, F(oo) —> 0, and we retrieve the re
sponse function Eq. (17) in the uniform gas 
approximation. 

The differential oscillation-strength distribution can 
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now be derived according to Eq. (7). 

^(«) = gi(«)+^2(a)), 
where 

(39) 

gi(«)= (cPxp{x) ReCl+F(c(x))]-15[co-coo(x)] (39a) 

is the continuous distribution of the atom of Eq. (19), 
modified by the interaction, while the second term 

2a> r F(<a) H 
— Im| 
7T L1 + F(C0) J co2 Lco2-coo2(x)J 

(39b) 

accounts for the atomic resonances. The appearance of 
the denominator in Eq. (39a) suggests the possibility 
for new resonances in the electron cloud of the atom. 
For, if real roots exist of the eigenvalue equation 

[1+F(co)] = 0, (40) 

g(o)) shows at these resonance frequencies sharp absorp
tion lines for ImF(co) —> 0, or correspondingly broader 
peaks if ImF(co) is finite. 

Equations (39a) and (39b), as derived for the statisti
cal model, appear to correspond loosely to the cases 
(a,b) and to (c), respectively, in the schematic Hartree 
model. 

Work is in progress to calculate g(w) for the statistical 
Thomas-Fermi model of the atom under realistic as
sumptions about the damping terms in F(«). In the next 
section we discuss qualitatively the content of Eq. (39) 
for a model sufficiently simplified to give explicit results. 

5. AN ILLUSTRATIVE EXAMPLE 

For a first estimate of /?(«), Eq. (36), we note that 
the real part of 4>irQo(q,oo)/q2 varies with the electron 
density as p(x) or as p1/3(x), depending on whether |q| 
is small or large compared to u/pF. However, the con
tributions from small |q| should dominate over most of 
the frequency range of interest. This agrees also with the 
philosophy adopted in our Fredholm expansion, since 
after forming the traces of the iterated kernels, the con
tributions from small | q | are of higher order in Z than 
those from large |q| . We neglect the finite imaginary 
part of Q0 which appears only for higher values of | q |. 
For our calculation then, we use the approximation 

4irQ0(g,w) 4?r 
~ lim —Qo(q,o))~-

W (x) 
(41) 

subject to the cutoff condition in momentum space 

gmax(x) = a1/V8
1/2(x)^F(x), (42) 

where a1/3 is a constant of order 1, and 

rs(x)=(47rp(x)/3)-1/3. 

For momenta larger than gmax, the collective states will 
decay rapidly into electron-hole pairs, and hence cease 

to be well-defined states of excitation. In this approxi
mation, the first part of Eq. (39) becomes 

• / • 

gi(«)= / ^p(x)P[l+F(co(x))]-15(W-c0(x)). (43) 

To calculate g2, we expand 1+F(<a) about the roots 0* 
of Eq. (40), and take the imaginary parts, 

o) = EQ. 
jdF(a>)\-i r P ( x W x 

r 2 ) / dHF 
V do:2 /QJ SV-G;O2(X) 

X5(w-fl.-). (44) 

If roots of Eq. (40) exist, the neglect of a finite imaginary 
part of F(a)) in favor of the simple approximations Eqs. 
(41) and (42) gives unphysically sharp resonance lines 
in g2, of course, and leads to spurious negative contribu
tions to gi near such resonances. Nevertheless, a study 
of Eqs. (43) and (44) suggests the type of interaction 
effects one may expect to find by an exhaustive analysis 
of Eq. (39) under physically more realistic assumptions. 

For a statistical model of the atom, we turn to an 
approximate description of the atomic structure due to 
Bohr.7 We assign to the nth electron in an atom the 
orbital radius an and the orbital velocity vn given by 

an=v2/n, 

vn=n/v, n=l, 2, • • • Z. (45) 

The effective quantum number v increases from a value 
close to 1 for the inner electrons to a broad maximum 
very nearly equal to Z1/3 for the intermediate atomic 
shells, again to drop to values close to 1 for the outer 
electrons. These three ranges of v correspond to the 
three frequency ranges referred to in the Introduction, 
since the frequencies w(#n) are proportional to vn/an. 

FIG. 1. F(U)/K versus (w/wc), Eq. (47), for the illustrative 
statistical example. 

7 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 
18, No. 8, 99 (1948); N. Bohr and J. Lindhard, ibid. 28, No. 7, 9 
(1954). 
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For sufficiently large Z, the frequency range (2) domi
nates, and to a good approximation one can set vc^.Zllz 

throughout the atom. Equation (45) describes an atom 
where coo2(#) = coc

2#~4, for x>l, where o)c—KcZ; o)c and 
Kc are cutoff constants corresponding to a cutoff radius 
rc~Z~1/3, and x= (r/rc). It is convenient to introduce 
the abreviations y— (co/coc), I\-= (0»/«c) and 

g{y) = Z~lucg(w). 

For this model, we obtain from Eq. (36) 

F(y)=KY(y), (47) 

where K= (3/4)1/2(a/iQ is a cutoff parameter of the 
model of order unity. The function Y(y) is shown in 
Fig. 1. Equation (40) has no root for /c<l.ll, and two 
roots for K > 1 . 1 1 . 

Equation (43) yields 

| I ( 7 ) = ( 2 T 1 / 2 ) - 1 { 1 + « F ( T ) } - 1 . (48) 

For /c=0, we retrieve the unmodified continuous dif
ferential oscillator-strength distribution of Eq. (19). 
The interaction modifies this by the expression in the 
brackets. As shown in Fig. 2, the curves of g\ shift to 
higher frequencies with increasing K, and develop a 
peak. When /c>l.ll, the curves have discontinuities 
near the resonances, as indicated schematically for 

FIG. 2. The oscillator-strength distribution gi, Eq. (48), of the 
illustrative statistical example. For K < 1 . 1 1 , no collective atomic 
modes exist. The areas under the curves gi are normalized to unity. 
For «>1.11, gi breaks up over the frequency range of the atomic 
modes, as indicated schematically for n—1.45 by the crosshatched 
strip. The two points (•) mark the resonance frequencies for 
/c = 1.45. 

FIG. 3. The atomic resonances and the partitioning of their 
collective oscillator strengths, Eq. (49), of the illustrative statisti
cal example, for different values of K. The diagram shows only an 
average behavior of the oscillator strength near K ^ I . 1 1 and 
7^0.54, where the two roots merge (wavy line). The two points 
(•) correspond to the case /c = 1.45 of Fig. 2. 

1.45. Concurrently, a contribution appears from 
. (Wi. Eq. (44) 

&(7)=L( /Orf (Y-ro . 
1,2 

(49) 

The base plane in Fig. 3 contains the solution curve for 
Eq. (40). The two roots move apart with increasing K, 
and change their share in the nearly /c-independent 
total atomic oscillator strength. The atomic modes ap
pear in this model calculation as unphysically sharp 
absorption lines because finite damping terms have been 
neglected. Still, this example suggests that collective 
atomic modes, where they exist, may well accrue a 
significant fraction of the total oscillator strength of 
the atom. 
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